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Abstract

The use of springs with very large stiffness to model constraints in vibratory systems has been a popular
approach to overcome the limitations on the choice of admissible functions in the Rayleigh–Ritz method.
The maximum possible error resulting from this asymptotic modelling can be determined by using positive
and negative stiffness values, or in general terms using positive and negative penalty functions. This paper
illustrates how this method could be used to determine the critical loads of structures.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Rayleigh–Ritz method is a well-known technique for solving vibration, stability and stress
analysis problems. In his address to the American Mathematical Society, Courant [1] identifies the
difficulty in choosing admissible functions as the major drawback of this method. This difficulty
arises because of the need to satisfy the geometric constraints of a system. To overcome this, he
suggests the use of artificial stiffness parameters having very large magnitude so that a rigid
constraint could be approximately modelled by a restraint. The effectiveness of this approach in
determining natural frequencies has since been studied by several researchers, and its applicability
has been extended to analyze rigidly connected systems and systems with cracks [2–7]. This idea
has also been used extensively in the solution of constrained variational equations and
optimization problems through the use of penalty functions [8–12]. In solving such problems, the
individual trial functions are allowed to violate the essential conditions (constraint conditions).
These conditions are indirectly imposed on the sum of the trial functions by adding an error
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function to the functional to be minimized. This error function is a product of the square of the
constraint condition and a very large penalty parameter.
The main obstacle to this approach is that there is no easy way to determine a suitable value for

the penalty parameter. While the parameter must be large enough to effect a constraint, it must be
small enough to avoid any numerical problems [10,12]. The limitations of the latter depend on the
capacity of the computer and the algorithm used, and must be taken into consideration when
using any penalty function. As Zienkiewicz [10] has pointed out, the selection of penalty
parameter is done empirically. However, the author is hopeful that a solution to this problem can
be found. In two recent publications [13,14], it has been shown that the use of positive and
negative values for the stiffness of the artificial restraints gives natural frequencies, which bracket
the corresponding values for a rigidly constrained system. This means that the maximum error
introduced by the asymptotic modelling (i.e., replacing rigid constraints with restraints having
large stiffness—equivalent to the use of large penalty parameters) can be found by calculating the
frequencies of the system using artificial restraints with positive and negative stiffness values.
Since the results for the rigidly constrained systems would be bounded by these results, if the
difference in the frequencies calculated using positive and negative values were too large then the
magnitude of stiffness could be increased. Starting with reasonably large stiffness parameters, this
process could be repeated until the desired accuracy is achieved. In a recent publication [15], the
author has shown that the constrained solution for the deflection of a beam is also bounded by
results from mathematical models using positive and negative penalty parameters. If this is true in
general, any error due to the use of penalty functions in solving a variational problem may be
determined, and controlled, by using positive and negative values for the penalty parameter.
The purpose of this paper is to show how this approach can be used to determine the critical

loads of a constrained structure in a linear analysis. It is shown that the critical loads obtained by
using positive and negative values for the stiffness of artificial restraints bracket the critical
loads of the constrained structure. It is also shown that as the magnitudes of the stiffness of
the restraints approach infinity, the critical loads of the restrained structure would approach the
critical loads of the constrained structure. Results for a clamped-simply supported beam are
presented here to illustrate this.

2. Theoretical considerations

Consider a structure A subject to a given set of static loads gP; where g is a load factor and P
represents forces or moments applied to the structure. In a typical stability problem, the ratio of
the various forces and moments remain the same and the problem is that of finding the critical
load factor which causes instability. Let Ar be a modified structure which is obtained by adding r

restraints to A: This may be physically achieved by using springs of stiffness k: In general, this
stiffness coefficient may be positive or negative. Let *Ar be the corresponding structure where the
restraints are replaced by rigid constraints.
The linear stability problem may be expressed by an eigenvalue equation of the form

½K�fqg � g½S�fqg ¼ f0g: ð1Þ
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Here [K] is an elastic stiffness matrix, [S] is a geometric stiffness matrix, and {q} is a generalized
displacement vector. The roots of the above eigenvalue equation give the critical values of g for
which non-zero {q} is possible.
Now consider this as a special case of the vibration problem expressed as an eigenvalue

equation in terms of a mass matrix [M] in the form

½K�fqg � g½S�fqg � o2½M�fqg ¼ f0g; ð2Þ

where o the natural frequency. For the special case of o ¼ 0; this reduces to Eq. (1). All real
structures possess mass, but even if a structure had negligible mass one could attach an artificial
mass distribution for the purpose of this proof. Now consider the possibility of a vibratory motion
of the structure with actual or artificial mass(es) in the neighbourhood of the critical values of g:
At a critical equilibrium, Eq. (1) holds. Therefore the corresponding natural frequency must be
zero, as otherwise Eq. (2) cannot be satisfied. A physical explanation for this statement is
described below.
As a natural frequency of a structure approaches zero, the period of vibration approaches

infinity. This means, if the structure were given an initial displacement from its equilibrium state,
it will never return to its original state, which by definition indicates a critical equilibrium state.
This argument applies to linear analysis only, and it should be noted that there are non-linear
cases (bifurcation of shells) where instability may occur in the absence of a corresponding zero
natural frequency.
From Rayleigh’s theorem of separation [16,17], the nth natural frequency of a constrained

structure is bracketed by the nth and (n þ 1)th natural frequencies of the unconstrained structure.
The unconstrained structure may have partial elastic restraints. Applying this to systems A1 and
*A1; gives

on;1p *on;1ponþ1;1; ð3aÞ

where on;r; *on;r denote the nth natural frequency of systems Ar and *Ar; respectively.
Therefore,

o2
n;1p *o2

n;1po2
nþ1;1: ð3bÞ

The above equation is valid even if the square of the frequencies were negative and whether or not
the restraints have positive or negative stiffness values.
Let *gn;1 be the nth critical load ratio of the constrained structure *A1:
If

g ¼ *gn;1 then *on;1 ¼ 0: ð4Þ

It follows from Eqs. (3b) and (4) that for the restrained structure A1; for any positive, definite k; if

g ¼ *gn;1; o2
n;1p0: ð5Þ

Eq. (5) is true for any definite k; but interest is only in the case of k > 0:
Let gn;1 be the nth critical load ratio of A1 for the same positive stiffness value. Noting that a

critical state corresponds to a zero natural frequency, if

g ¼ gn;1 then o2
n;1 ¼ 0: ð6Þ
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One can define the load ratio in such a way that an increase in its value would cause the system to
approach the critical states of the modes of interest. With this definition, it can be said that an
increase in the load ratio g cannot increase o2: Then it follows from Eqs. (5) and (6) that

gn;1p*gn;1: ð7Þ

Similarly from Eqs. (3b) and (4) for the restrained structure A1; for any negative, definite k; if

g ¼ *gn;1; o2
nþ1;1X0: ð8Þ

Let gnþ1;1 be the value of g; which, for the same negative stiffness k; makes the (n þ 1)th
frequency squared become zero. Thus gnþ1;1 is the (n þ 1)th critical load of A1 with a negative
stiffness value.
If

g ¼ gnþ1;1 then o2
nþ1;1 ¼ 0: ð9Þ

Since an increase in the load ratio g cannot increase o2; from Eqs. (8) and (9)

gnþ1;1X*gn;1: ð10Þ

Combining Eqs. (7) and (10) gives

gnþ1;1X*gn;1Xgn;1: ð11Þ

This may be regarded as a statement of separation of critical loads.
According to the theorems of existence and convergence of natural frequencies with negatively

restrained structures [14]

on;1- *on;1 as k-N; ð12aÞ

and

onþ1;1- *on;1 as k-�N: ð12bÞ

Using Eqs. (6) and (12a), as k-þN; for g ¼ gn;1; *on;1-0:
From this and Eq. (4), as

k-þN; gn;1-*gn;1: ð13aÞ

Similarly from Eqs. (9) and (12b), as k-�N; for g ¼ gnþ1;1; *on;1-0:
From this and Eq. (4), as k-�N;

gnþ1;1-*gn;1: ð13bÞ

From Eqs. (11) and (13) one can therefore say that the critical loads of a structure with one
restraint would approach the critical loads of the same structure with a rigid constraint
(corresponding to the restraint) as the magnitude of the stiffness parameter approaches infinity.
Since the results for constrained systems would be bracketed by the results for a restrained system,
the maximum possible error due the approximation in modelling the constraint with a restraint is
the difference between the critical load ratios corresponding to positive and negative restraints.
By using the principle of mathematical induction, it may be shown that this is true for any

number of restraints. This finding is useful in applying the Rayleigh–Ritz procedure for
calculating the critical loads of constrained structures, since the individual deflection functions
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need not satisfy the constraint conditions. This is illustrated in the example presented in the next
section.
The use of negative stiffness solves another problem. While the buckling loads obtained using

large positive restraints in place of rigid constraints and connections are upper bounds to the
asymptotic model they cannot be guaranteed to be upper-bound estimates of the actual problem
because the asymptotic model is more flexible than the actual structure. Therefore, one gets a
lower-bound estimate of an upper-bound solution resulting in an uncertainty about the nature of
the boundedness. However, if negative values are used for the spring stiffness, then the buckling
loads obtained cannot in any event be lower than the buckling loads of the fully constrained
structure. This way one can get a true upper-bound solution.

3. Illustrative example

In order to illustrate the behaviour of a system with a support approximated by a spring of
positive and negative stiffness, consider an Euler–Bernoulli beam of length L; flexural rigidity EI ;
clamped at one end and laterally supported at the other by a spring of stiffness k0 (ultimately to
approximate a simple support) which is subject to a compressive axial load P: The exact solution
for this problem is readily obtainable from the beam differential equation with substitution of the
appropriate boundary conditions.
A Rayleigh–Ritz solution for the clamped–spring supported problem may be formulated as

follows. The lateral displacement of the beam may be expressed by a power series

f ðxÞ ¼
Xn

j¼1

ajðx=LÞjþ1; ð14Þ

where n is the number of terms used. These functions satisfy the zero slope and displacement
conditions at the clamped end (x ¼ 0) but permit deflection to exist at the spring supported end
(x ¼ L).
The Rayleigh–Ritz minimization equation is

@V=@ai ¼ 0; ð15Þ

where the total potential energy V is given by

V ¼
Z L

0

EI

2
ðf 00ðxÞÞ2 dx �

Z L

0

P

2
ðf 0ðxÞÞ2 dx þ

k0

2
ðf ðLÞÞ2: ð16Þ

Substituting Eq. (14) into Eq. (16) and minimizing as given by Eq. (15) results in a matrix
eigenvalue equation of the standard form which can be solved using any one of a number of
standard algorithms. As mentioned before, the clamped-simply supported case is approached by
letting the modulus of k0 become very large. The results are given in Fig. 1 and Table 1, in terms of
the critical load ratio gn;1 ¼ Pc;n;1L

2=EI and a non-dimensional stiffness coefficient k ¼ k0L3=EI :
It may be seen that as the absolute value of the spring stiffness parameter is increased, the

values of the critical load ratio converge toward those for a clamped-simply supported beam,
approaching from below for the positive spring stiffness and from above for the negative stiffness,
as predicted by Eqs. (11) and (13).
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It is interesting to note that as k tends towards �3, where the absolute value of the stiffness
becomes equal to that of a tip-loaded cantilever, the fundamental critical load parameter tends
towards zero. This is to be expected because for k ¼ �3; the structure with the negative restraint
has no net stiffness even at the unloaded state as the stiffness of the original structure and the
negative stiffness of the artificial restraint cancel each other. Therefore, when using negative
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Fig. 1. Variation of the critical load with stiffness.

Table 1

Variation of the critical load with stiffness (n ¼ 8)

Stiffness k g1;1 g2;1 g3;1

�105 20.191 59.681

�104 20.195 59.692

�103 20.230 59.793

�100 20.533 60.436

�50 20.781 60.781

�20 21.229 61.193

�3 21.966 61.593

�2.9995 0.00042 21.966 61.593

0 2.4674 22.207 61.686

10 9.956 23.640 62.070

30 17.558 33.073 63.460

50 18.992 45.988 67.168

75 19.496 54.637 79.620

85 19.597 55.966 86.272

90 19.637 56.419 89.620

100 19.703 57.076 96.027

103 20.150 59.554 118.816

104 20.187 59.668 119.063

105 20.190 59.679 119.084

7N (exact) 20.191 59.68
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stiffness in asymptotic modelling, it is best to calculate the stiffness of the unrestrained structure
corresponding to the desired constraint, and use values that are larger in magnitude (in the present
case the magnitude of negative stiffness should be greater than 3) to ensure that only the critical
loads of the constrained structure are being delimited.
For k ¼ 0; the critical load ratios corresponding to the first three modes (2.4674, 22.2069,

61.8626) agree very closely with the exact values of p2=4; 3p2=4; and 5p2=4: The discrepancy
between these values is less than 1%. As expected the critical loads calculated using the Rayleigh–
Ritz method are slightly greater than the exact values. For this case, the constraint conditions
(zero slope and zero deflection at the clamp) are satisfied. The exact values of critical load ratios
for a clamped-simply supported beam are given in the last row. It may be seen that for very large
magnitudes of k; the critical load ratios of the restrained system approach the exact values of the
rigidly constrained system; for negative stiffness values the approach is from above while for
positive stiffness it is from below.

4. Concluding remarks

In the determination of the critical loads of linear elastic structures, rigid constraints and
connections may be modelled by elastic restraints having very large positive or negative stiffness
coefficients. This is particularly useful in the application of the Rayleigh–Ritz method as it
removes the limitation in selecting admissible functions. It is possible to select functions which
violate boundary conditions and compatibility conditions at connections, by enforcing these
constraints through the introduction of artificial stiffness parameters of very large positive and
negative values. The critical loads found by using positive and negative stiffness approach the
critical loads of rigidly constrained structures from different sides. Therefore, any error
introduced by the asymptotic modelling could be estimated and in most cases controlled by
choosing stiffness coefficients of sufficiently large magnitude.
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